Measuring air quality in Matei Bals

A case study in an infection hospital in Romania

EXCELLENCE IN PANDEMIC RESPONSE AND ENTERPRISE SOLUTIONS

> **Piia Sormunen,** Ville Silvonen, Mohamed Elsayed, Anni Luoto, Jari Erkkilä, Topi Rönkkö

> > www.pandemicresponse.fi

Integrated Hospital Design Alliance

Integrated Hospital Design Alliance | Better Healthcare with Nordic Hospital Design (ihda.fi)

Piia Sormunen
Industry Professor, Tampere
University
Development director,
Granlund Ltd
p. +358 40 6533 118
piia.sormunen@tuni.fi
piia.sormunen@granlund.fi

Objectives

- Can the risk of airborne infection in a naturally ventilated building be lowered using air purification units?
- Studying existing indoor air quality and ventilation status in the hospital
- Installing air purification units in the studied spaces
- Measuring the effect of this intervention on air quality
- Also: gathering supporting data for simulations and risk models
 - Verifying simulation results experimentally

Inspector Sec Oy info@isec.fi www.isec.fi

Air 0 pure 600 info@air0.fi www.air0.fi

Risky spaces for airborne infections investigated in Matei Bals

Waiting area ICU room Covid room

Waiting area

• Located in the main hospital building on the first floor

Air purifier and measuring tools placement

ICU unit

• Located in the main hospital building on the Second Floor

ICU room-Air purifier and measuring tools placement

Air purifier unit

Covid Ward (Feb 2023)

• Located in the Covid ward building on the Second Floor

Covid Ward

Measurement instrument

• Air purifier unit

Parameters investigated

- Temperature (T) (indoor and outdoor)•
- Relative Humidity (RH) (indoor and outdoor) ٠
- Carbon Dioxide (CO2). ۰
- Particulate Matter (PM10, PM2.5, PM1.0) (indoor ٠ and outdoor)
- Total Volatile Organic Compounds (TVOC). •
- Lung deposited surface area (LDSA) (Indoor and • outdoor)
- Black carbon (BC) pollution (indoor and outdoor) ٠
- Microbiological sampling. ٠
- Airflow rates. ٠
- Air and surface temperature. ٠

Observair- black carbon mass concentration

Parameters investigated outdoors

Mounted to a wall in the balcony – 2nd floor – covid section

Waiting area indoor/outdoor particle ratio

I/O-ratio in the waiting area before and after installing the air purifier.

ICU room indoor/outdoor particle ratio

Covid room indoor/outdoor particle ratio

I/O-ratio in the Covid room before and after installing the air purifier.

Calculated probability of airborne infection in covid room

Initial data

- One patient has covid infection
- One patient has no infection
- The infection risk is calculated with Wells-Riley model

Air change per hour in isolation room

	Ventilation type	Air exchange per hour ACH, 1/h				
Case studies Isolation rooms		Initial situation		Intervention	Design requirements for isolation rooms, total ACH	
		Design outdoor ACH	Measured outdoor ACH	Total ACH with air purifier	The Lancet COVID-19 Commission (2022)	R3 Nordic Guideline for Hospital Ventilation (2023)
Matei Bals ICU Romania	Natural ventilation	N/A	1.0	5.5	12 – 20	12 – 24
Hospital 1 (Built 1976) Finland	Mechanical ventilation + air lock	4.2	1.7	10.8		
Hospital 2 (Built 2014) Finland	Modern mechanical ventilation +air lock	9.3	N/A	N/A		

* Simulated ACH with Ida-Ice program

Conclusions

www.pandemicresponse.fi

- Air purifiers were efficient in reducing airborne particulate matter in the naturally ventilated hospital
- Measurements are in a key role when we search for methods to tackle pandemics
 - Learning to know the aerosol means we can develop ways to identify certain parts of it
- Air purifiers minimise spread of the pathogens from patient room to the corridors.
- In the waiting area air purifiers protect patient and personnel of airborne infections